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Abstract.  At the border of the Hungarian Central Mountain Range and the Hungarian Great  Plain 
Brachypodium pinnatum is a dominant component of  the herb layer of Quercus pubescens 
oakwood. In Hungary, Brachypodium grasslands are of very high diversity and natural conservation 
value because they preserve many elements of the original forest-steppe flora. During the secondary 
succession after deforestation xeromesophilous Brachypodium pinnatum community develops and 
gradually turns into xerophilous grasslands.  
Spatial organization and compositional differentiation of Brachypodium pinnatum communities 
were studied in three stands representing  their early, middle, and late secondary successional 
phases. Presence/absence of species were detected in 20×110 grids of contiguous 5×5 cm micro-
quadrats, and analysed by using information statistics.  
Early phase was characterized by a coalition of mesic species. Xeric and mesic grasses formed 
coalition in the middle phase but they were segregated in the late successional phase. However, the 
pattern of species replacement was diffuse and gradual during the transformation process. 
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Introduction 
 
Statistically determined associations between 

species and species groups are  considered to be an 
important feature of a plant community (Kershaw 
and Looney 1985). 

 Analysing the spatial pattern of individual 
species in natural and disturbed communities has 
been still very frequent, and interest in this topic has 
been continued since the pioneering work of Greig-
Smith (1952,1961), Hurlbert (1969) and Kershaw 
(1959, 1960, 1963). While in the „golden age” of 
pattern analysis about 20 years ago (Greig-Smith 
1983, Kershaw 1973, 1985, Schluter 1984) at most 
one and two-species patterns were studied, recently 
multispecies patterns (e.g. Bartha 1992, Juhász-Nagy 
1976, 1984, Podani et al. 1993, Dale 1991, 1995) 
and coalitions or functional groups have been 
received considerable attention (Wilson et al. 1994, 

Bartha et al. 1995). Several authors emphasized the 
importance of frequency changes of significant 
interspecific associations in successions (O’Connor 
and Aarssen 1987, Leps and Buriánek 1990, Matus 
and Tóthmérész 1990, Myster and Pickett 1992 and 
Margóczi 1995). Van der Maarel stressed in one of 
his reviews (1996) the ecological significance of time 
sequence of observations and spatiotemporal pattern 
analyses. 

Recently increasing evidences suggest that 
complex patterns of vegetation and species populat-
ions exist at a range of spatial and temporal scales. 
Great stohastic spatiotemporal variability in distri-
bution and abundance of species or species groups 
was often revealed which was in many interpretations 
considered to be an inherent stochastic character of 
successional patterns to support the individualistic 
and stochastic concept of vegetation. However, there 
are many results even at fine-scales, which contradict 



4  TISCIA 31 

to the individualistic view and show determinisitic 
feature of the relationships between species and 
populations (Gigon 1996) or non-randomness of 
pattern of individual species (Turkington et al. 1985, 
Thorhallsdóttir 1990, Watkin and Wilson 1992). 
Challenges for ecologists to know more about the 
spatial organization of species during successions 
have still remained. 

In this paper we study the compositional 
differentiation of a xeromesophilous Brachypodium 
pinnatum community at fine-scale. Transformation of 
species composition, fine-scale spatial patterns and 
coalition structures were analysed along a succes-
sional gradient characterized by the gradual change 
of xeromesophilous Brachypodium pinnatum 
community into xerophilous ones.  

This work is part of a larger project dealing with 
vegetation dynamics, as well as species replacement 
and microstructure changes of Brachypodium com-
munities at different spatial and temporal scales. 

The main purpose of the present paper is to 
reveal the differences in the fine-scale structure of 
local species coexistence in a changing vegetation of 
different successional stages. We are especially 
interested in the changes of pairwise associations 
between species. 

Two hypotheses were tested. Whether 1) species 
replacements are diffuse and random or particular 
coalition structure is developing, as well as 2) xeric 
and mesic species are assembled randomly or they 
are segregated into microhabitats of different light 
conditions and water availability. 

 
Material and methods 

 
Study si te  

 
Field studies were carried out in a local nature 

conservation area in the north part of Hungary. 
The investigated area is located 25 km east of 

Budapest at the border of the Gödöllô Hills. The area 
is part of a forest steppe zone at an altitude of 200-
230 m above sea level. The climate of the area is 
intermediate in character between the continental 
climate of the Great Plain and the subcontinental 
climate of the hilly-country. The mean annual 
temperature is 9 oC and the mean annual precipitation 
is about 600 mm. Brown forest soil of chernozem 
character is typical on the loess substrate. 

The study area was formerly covered by dry 
Quercus pubescens oakwood. Most of it was cut in 
the early 1900’s (Military Survey 1883, 1943). This 
forest activity resulted in a wide range of habitats in 
which diverse vegetation types formed by local 
secondary successions of different directions and 

rates. Nowadays, remnants of forest, shrub vegetation 
and a series of grassland communities of 
xeromesophilous to xerophilous character can be 
found along the 2 km long northeasterly slopes of the 
loess valley. For more details about the description 
of the vegetation and its landscape-level hetero-
geneity see Fekete et al. 1998.  

Brachypodium pinnatum plays a central role in 
the course of secondary succession following defo-
restation. This species was the dominant component 
of the sparse undergrowth layer of the former dry 
oakforest.  

The stands of Brachypodium pinnatum (forest 
remnants) have survived for many decades after 
deforestation. Some of them are able to preserve 
many shade-tolerant forest species, while the others 
become saturated by the xerothermic grassland 
species. Characteristically, the stands of Brachypo-
dium pinnatum community of the open and sunny 
areas became closed and dense after the removal of 
trees. Gradual abundance decline of Brachypodium 
pinnatum through the secondary succession can be 
regarded as long term responses to the lack of forest 
microclimate and tree canopy closure.  

Our target object is a xeromesophilous Brachy-
podium pinnatum community, which represents an 
intermediate stage along a forest - steppe floristic 
gradient on the study area. It has developed during 
the secondary succession after deforestation and it is 
gradually turning into xerophilous communities 
(Fekete et al. 1998). 

Three types of the xeromesophilous Brachypo-
dium pinnatum community developed during the past 
100 years were selected for the present study. They 
are different floristically and coenologically from 
each other in various degree, however these 
„communities” did not receive a separate syntaxono-
mical status. For convinience, the terms of „com-
munity” and „stages” will be used alternatively 
further in this paper.   

These communities are as follows:  
Forest-type of Brachypodium pinnatum commu-

nity represents an early phase of  secondary succes-
sion. It can be found along the edge of Crataegus 
monogyna shrub on slopes influenced by shadow of 
Crataegus plants and also of small groups of white 
oaks. Coverage of Brachypodium pinnatum amounts 
to 60-70% or more. The stand is dense and closed, 
where the average height of the sward is about 50-60 
cm. A litter thickness is 10-15 cm. It preserves 
numerous shade-tolerant forest plant species as rests 
of the earlier forest, whereas the number of steppe 
plants is very low here. 

Transitional-type of Brachypodium pinnatum 
community representing the middle successional 
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phase is a so-called mixed type of high mesic and 
xeric species diversity dominated by many dicots and 
broad-leaved grasses. The sward is of low saturation, 
with light closure (50-60%). The height of sward is 
30-45 cm, the litter thickness is 5-10 cm. Total cover 
of Brachypodium pinnatum is only 15-35%. Many 
xeric species are favoured by Brachypodium canopy 
thinning. Coverage of Festuca rupicola — pioneer of 
xerothermic grasslands — often also amounts near 
25%. The number of steppe species is relatively high 
approaching to 15-20, and their total cover is 
sometimes considerable (35-55%). 

Steppe-type of Brachypodium pinnatum commu-
nity represents a late successional stage of the 
gradient from forest to steppe. The height of sward is 
30-35 cm, and the litter thickness is only 2-6 cm. It 
mainly develops on upper part of slopes to S, so its 
habitat is fairly warm and dry. The forest plants 
tolerant to shade are strongly suppressed here. 
Coverage of Brachypodium pinnatum considerably 
decreased and the vitality of this grass is much lower 
than it was in the former vegetation type, yellowing 
of leaves can often be observed. Gaps in the sward 
are significant giving opportunity for colonizing 
more and more steppe plants. Abundance of Festuca 
rupicola and many other steppe plants is 
considerable.  

 
Field sampling 

 
We chose physiognomically uniform stands of 

each community occurring close together in space. 
They are all surrounded by Bromus erectus grass-
lands, which means a similar coenological environ-
ment in the neighbourhood of each stand. The stands 
of three successional stages represent also a light 
gradient associated with the declining dominance of 
Brachypodium pinnatum.  

At a fine-scale 25 cm2 contiguous plots were 
sampled. Presence/absence of species were detected 
in 20×110 grids of contiguous 5×5 cm microquadrats 
in June. Vegetative units of all plants rooted in 
microplots were also counted. For all graminoids 
vegetative units are defined as tillers. Small seedlings 
with only young small leaves were not included, 
since they differ much from the more established 
plants, as well as from their dynamics (Herben et al. 
93). 

 
Computerized sampling and data analysis 

 
From the 20×110 grids of presence/absence data 

computerized sampling were performed (Podani 
1984a,b, 1992). Repeating the sampling procedure 
with increasing sampling unit sizes across a range of 

scales between 5×5 cm and 5×150 cm, we created a 
series of 2×2 contingency tables for each pair at each 
scale. Association between two species was 
computed from the 2×2 contingency table and it was 
expressed by their mutual information, I(A,B) (see 
Juhász-Nagy 1980, 1984, and Juhász-Nagy and 
Podani 1983 for details of the computation.) 
Significant associations were detected by Monte 
Carlo randomization tests. We applied complete 
randomization (Diggle, 1983) that randomizes 
completely the positions of individuals (the presences 
in our case) of each species within the whole grid 
(Site model, Watkins and Wilson 1992), but keeps 
the number of species and their frequencies constant, 
i.e. same as in the field. Significance of observed 
value can be calculated as probability of the observed 
value under the null hypothesis, i.e. the proportion of 
Monte-Carlo randomizations in which the random 
I(A,B) is more extreme than the observed value. 
5000 randomizations were applied in each test. The 
sign of associations was detected by comparing the 
sums of the frequency of the diagonal cells in the 2×2 
contingency table (comparing a+d to b+c) (Kershaw 
1964). According to our experiences (Bartha and 
Kertész unpublished), beside the interspecific spatial 
dependence, this method might detect additional 
significant positive associations due to autocorrelat-
ions (i.e. the aggregated patterns of species) as well. 
When we repeat the analyses at several sampling unit 
sizes, the interval of spatial scale of significant 
associations increases due to autocorrelations. 
Textural constraints also influence these scales 
(Bartha and Horváth 1987, Tóthmérész and Erdei 
1992). The type of randomization applicable to grids 
does not allow us to separate these effects. Therefore, 
we did not interpret the scale of associations. After 
surveying the significant associations at all sampling 
unit sizes, an association was considered to be 
positive if it was always positive. If the sign of 
associations between two species changed with scale, 
we considered it as negative, because the additional 
positive association might indicate autocorrelation 
only. The same technique was successfully applied 
for successional data by Bartha (1992). Frequency of 
significant positive and negative associations were 
calculated for each successional stage (expressed as 
percentage of the potential maximum, i.e. the number 
of possible species pairs). To avoid artefacts due to 
rarity and due to the limited sample size, rare species 
(with frequency less than 1%) were omitted from the 
analyses. 

Plexus diagrams depicting the significant 
positive and negative associations (McIntosh 1978) 
were displayed in the case of all species and only for 
the graminoids. 
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Considering the coenological and ecological 
affinities of the species we distinguished 3 groups of 
species (guilds) in our site, such as the so-called 
forest species (i.e. mostly mesic, shade-tolerant 
species), the steppe species (i.e. mostly drought-
tolerant and light-demanding xeric species), as well 
as the „indifferent” species. Thus, the significant 
associations were also evaluated with respect to these 
3 species groups, from which changes in the first 2 
groups are likely responsible for the outcome of 
secondary succession. 

 
Results 

 
Textural  at tr ibutes  

 
All stands are dominated by vegetatively 

spreading perennial species. Altogether 60 species 
were detected in the 3 stands. Some textural 
attributes in 3 stages of succession are presented in 
Tables 1 and 2.   

It is remarkable, that the proportion of rare 
species (freq.:<1%) is very high accounting for 68, 
57 and 58% of the total number species of each of 
the stands. In general, very few dominant and 
codominant (freq.:>5%) species (7,8 and 11) occur 
in all stands. Most of the species appear in the 
middle successional stage, but many codominant 
(50%) species are apperant in the steppe-like 
Brachypodium stand (=late successional stage). 
Brachypodium pinnatum appears to be fairly 
ubiquitous in the forest-like stand (early stage of 
succession), where its predominance can result the 
lowest species richness. 

The secondary succession can be characterized 
by the decreasing dominance of Brachypodium 
pinnatum. Its pathway is thought to be affected by 
the changes in species abundance, pattern of 
individuals and varying light conditions. A clear 
trend of decreasing abundance of mesic and 
increasing abundance of xeric perennial species 
along the successional gradient is well-expressed 
(Table 1), such as the changes of the number of light-
demanding xeric species from 25% to 54%. As Table 
1 shows, there is only a slight decrease in the 
frequency of Brachypodium along the mesic to xeric 
successional gradient measured in the microquadrats. 
However, the considerable decrease of its cover, the 
decreasing height of tillers, and the lower litter 
thickness found in the Transitional and Steppe-type 
indicate indirectly the decreasing viability of 
Brachypodium clones exposed to light and drought 
after deforestation. Note that the abundance 
differences are much more considerable also in the 

case of Festuca rupicola and Bromus erectus, than 
their frequency values.  

 
Table 1. Some textural attributes in 3 successional stages of 
Brachypodium pinnatum grassland after deforestation in Hungary 

 
 Forest-

type 
Transitional-

type 
Steppe-

type 
total cover 100 130 115 
litter thickness 10-15 

cm 
5-10 cm 2-6 cm 

average height of the 
sward 

50-60 
cm 

30-45 cm 30-35 
cm 

    
total species richness 50 60 53 
number of frequent 
species 

   

frequency % >= 1 16 26 21 
frequency % >=5 7 8 11 
frequency % >= 10 3 5 6 
    
mesic species   
(% of total species) 

62 52 42 

xeric species   
(% of total species) 

25 46 54 

    
cover %    
Brachypodium 
pinnatum 

74.9 35 22 

Festuca rupicola 3.6 7.7 15.4 
Bromus erectus 23 17.6 20 
    
frequency %    
Brachypodium 
pinnatum 

79 63 52 

Festuca rupicola 23 17.6 20 
Bromus erectus 5.5 24.7 25 

 
An approximation of the coal i t ion 
structure with p lexus graphs 

 
In the Forest-type community there are only 

positive associations (27 in total) between the 
species. The graph is of reticulate character, majority 
of species is mesic (Fig. 1a,b, Table 3). The mesic 
grasses (e.g. Dactylis glomerata) and dicots (e.g. 
Betonica officinalis) with low frequency appearing in 
the small openings of the stand are infiltrated 
(intermingled with) between the more frequent 
species. No expressed multi-coalition structure is 
appearent.  

The largest number of significant positive  (27) 
and negative (32) associations were detected in the 
middle successional stage (Fig. 2a,b). Many mesic 
and xeric species are mixed with each other forming 
significant associations. Dicots except of tall species 
with very deep, weel-developed root system (e.g. 
Achillea pannonica - Helianthemum ovatum, 
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Astragalus onobrychis - Chamaecytisus austriacus) 
are usually positively associated, whereas between 
graminoids and between graminoids and dicots both 
positive and negative associations prevail. A lot of 
relatively rare species with low frequency also play a 
role in developing the complicate association 
structure of this type. We stress here the importance 

of  positive associations of some xeric graminoids, 
such as Festuca rupicola, Carex humulis, Koeleria 
cristata with other graminoids and dicots, as well. 

In the Steppe-type Brachypodium stand a 
complex association structure among the species is 
also peculiar, similarly to the former community 
(Fig. 3a). The number of positive and negative 

Table 2. Abundance hierarchy of the species in 3 successional stages of Brachypodium pinnatum grassland after deforestation in 
Hungary (Percentage frequency of species (>1 %) in the 20 × 100 grids is presented) 
 

Forest-type  Transitional-type  Steppe-type 
Code of species Frequency %  Code of species Frequency %  Code of species Frequency % 

BRAPIN 79.5  BRAPIN 63.1  BRAPIN 52.4 
FESRUP 23.7  BROERE 24.7  BROERE 25.8 
TEUCHA 11.2  CARHUM 18.5  FESRUP 20.3 
CARCAR 7.4  FESRUP 17.6  CARCAR 12.6 
POAANG 6.4  CARCAR 13.9  FILVUL 11.6 
BROERE 5.9  HELOVA 9.6  THYPAN 10.5 
ARRELA 5.5  ARRELA 7.6  CARHUM 9.2 
FILVUL 4.5  SESANN 6.7  SESANN 8.6 
FALVUL 4  ACHPAN 4.8  TEUCHA 8.4 
SESANN 3.6  TRIMON 4.1  TRIMON 5.7 
THYPAN 3.5  EUPPAN 4  PHLPHL 5.3 
TRIMON 3.3  DACGLO 3.3  BOTISC 3.6 
PHLPHL 2.4  TEUCHA 3.2  MEDFAL 3.1 
GALVER 2.2  CAMRIT 3.1  AGRREP 2.5 
DACGLO 1.2  PIMSAX 3  KOECRI 2.4 
BETOFF 1  MEDFAL 2.9  THLJAN 1.7 

   KOECRI 2.8  CHRGRY 1.6 
   FILVUL 2.8  DACGLO 1.5 
   CHAAUS 2.7  CAMROT 1.2 
   ASTONO 1.7  ARRELA 1 
   VIORUP 1.6  HELOVA 1 
   PHLPHL 1.5    
   SILVUL 1.1    
   CENSAD 1    
   AGRREP 1    
   BRIMED 1    
 
 
Table  3. List of species indicated in the plexus graphs 
 

Name of species  Code Guilds Name of species  Code Guilds 
Achillea pannonica ACHPAN xeric Festuca rupicola FESRUP xeric 
Agropyron repens AGRREP xeric Filipendula vulgaris FILVUL mesic 
Arrhenatherum elatius ARRELA mesic Galium verum GALVER mesic 
Astragalus onobrychis ASTONO xeric Helianthemum ovatum HELOVA xeric 
Betonica officinalis BETOFF mesic Koeleria cristata KOECRI xeric 
Bothriochloa ischaemum BOTISC xeric Medicago falcata MEDFAL xeric 
Brachypodium pinnatum BRAPIN mesic Phleum phleoides PHLPHL xeric 
Briza media BRIMED indifferent Pimpinella saxifraga PIMSAX indifferent 
Bromus erectus BROERE mesic Poa angustifolia POAANG mesic 
Carex caryophyllea CARCAR indifferent Seseli annuum SESANN indifferent 
Carex humilis CARHUM xeric Silene vulgaris SILVUL indifferent 
Centaurea sadlerana CENTSAD indifferent Teuchrium chamaedrys TEUCHA mesic 
Chamaecytisus austriacus CHAAUS xeric Thlaspi jankae THLJAN xeric 
Chrysopogon gryllus CHRGRY xeric Thymus pannonicus THYPAN xeric 
Dactylis glomerata DACGLO mesic Trifolium montanum TRIMON indifferent 
Euphorbia pannonica EUPPAN xeric Viola rupestris VIORUP xeric 
Falcaria vulgaris FALVUL indifferent    
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associations is near the same, but both are less, than 
in the middle stage (17 +, 18 -). It is important that 
between the perennial graminoids only negative 
associations appear with one exception (Fig. 3b). It is 
very likely that the growth habit of grasses partly 
accounts for the negative values. In this late suc-
cessional stage mostly xeric species form coalitions 
and strong spatial segregation of graminoids is 
characteristic. The commuinty may be divided into 2 
coalitions. Bothriochloa ischaemum, Seseli annuum, 
Helianthemum ovatum, Thlaspi jankae, Trifolium 
montanum are positively associated in the first 
coalition, while positive associations appear between 
Phleum phleoides, Chrysopogon gryllus, Teuchrium 
chamaedrys and Filipendula vulgaris in the other 
coalition. These coalitions were separated from each 
other by many negative associations. 

If we consider the significant associations 
between the 3 groups of species („guilds”) differen-
tiated by their ecological requirements (Table 3), 
much higher number of significant positive and 
mainly significant negative associations can be found 
between guilds than within guilds in each 
commuinty. The greatest differences are in the case 
of the final stage of secondary succession. 

 
 % number of significant associations 
 within guilds between guilds 
 (% of within-guild 

total) 
(% of between-guild 

total) 
Forest-type 8.5  (8.5 +,  0 -) 17.8  (16.4 +, 1.4 -) 
Transittional-type 11.8  (6.3 +,  5.5 -) 15.9  (8.2 +, 7.7 -) 

Steppe-type 7.4  (4.3 +,  3.1 -) 14.7  (6.6 +, 8.1 -) 

 
Discussion 

 
Trends of species associat ions in 
succession 

 
A decreasing trend of the frequency of 

significant associations (standardized by the number 
of possible species pairs) has been found during the 
secondary succession. The frequency % changing 
from 14.2, 12.9 to 10.2% corresponded with the 3 
successional stages studied. Our result is in good 
agreement with the general experience that a 
declining tendency in the changes of the frequency of 
significant associations with the successional ages is 
rather typical (Myster and Pickett 1992). However, 
no consistent trend in old fields was also pronounced 
(e.g. Leps and Burjánek 1990).  

 
Coal i t ion structure 

 
In our communities expressed differentiation into 

well-separated species coalitions could not be found 
in contrast with the results obtained by Margóczi 
(1995) and Matus and  Tóthmérész (1990) in their 
natural and grazed sandy communities. Highly 
complex association structures were revealed in the 
successional stages of a transforming process of the 
xeromesophilous Brachypodium community. Our 
grassland types are well-structured with complex 
multispecies coalitions as compared to the sandy 

 

 
Fig. 1. Plexus diagram for species of an early successional Brachypodium coenostate (significant pairwise associations  
(p: < 0.01): ____ positive, ----- negative, A: between monocots and dicots, B: between monocots). (Abbreviations are in Table 3.)  
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grasslands with relatively simple coalitions of few 
species. 
 
Most characterist ic feature of forming 
species associat ions in 3 successional 
stages of a transforming vegetat ion   

 
In our communities the number of significant 

associations was relatively low (10-14%) suggesting 
diffuse competition between species (Leps and 
Burianek 1990). Great differences were revealed how 
the individual species were spatially assemblaged in 
the 3 successional stages. The Forest-type 
community including only positively associated 
species (mostly mesic ones) was separated from the 2 
later successional stages. The most complicated 
reticulate plexus graph with the highest number of 
the significant positive and negative associations 
were detected in the middle phase of succession. 

Strong segregation of graminoids and development 
of well-structured coalitions were initiated in the late 
successional phase. 

Plexus graphs analysed varied considerably 
between successional stages. Early phase was 
characterized by a coalition of mesic species. Xeric 
and mesic grasses formed a coalition in the middle 
phase but the graminoids were strongly segregated 
spatially in the late successional phase. 

We conclude that between communities on a 
local scale a slow shift of dominance hierarchy took 
place and habitat selection had also acted. Particular 
local coexistence structure was typical referring to 
the different communities. Some exclusion of species 
combinations was also going on mainly caused by 
textural and microtopographical constraints. We 
suggest that the decrease of the dominance and 
abundance of Brachypodium pinnatum modified the 
micro-environmental conditions (light intensity 

 
 

 
 
Fig. 2. Plexus diagram for species of a middle successional Brachypodium coenostate. (Explanation for symbols see in Fig. 1 and Table 
3.) 
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within a stand, degree of local colonization). 
Microheterogeneity of the stands influenced forming 
the species assemblages, as the species or species 
groups differently preferred the varying microsites 
and biotic and abiotic conditions in a dense or 
slightly dense stands of successional stages. The 
density of individuals, morphology, growth form, 
limited dispersal and spatial distribution of perennial 
plants were the most influential factors controlling 
the coexistence of species.  

Thus, answering our first hypothesis, we can 
conclude that various coalitions are developing in 
succession. However, it is very likely that pattern of 
species replacement during the secondary succession 
is diffuse and gradual instead of a complete 
replacement of species at stand scale. It was 

appearent that the species rather showed overlap and 
continuous transition among the successional stages. 

As to the second hypothesis, we can state that in 
each successional stage most of the species showed 
non-random fine-scale spatial distribution. 
Aggregated spatial distribution of many species 
reflected different spatial microheterogeneity within 
each stand at fine scale. Forest and steppe species 
were not completely randomly assembled even at 
fine spatial scale. We stress that all our communities 
(states) dominated by perennial species spreading 
vegetatively were closed of high species saturation, 
where colonization by seeds were less significant. 
Fine-scale spatial heterogeneity was mainly caused 
by growth form of individuals. Dispersal was limited 
considering that the seeds could reach mainly 
adjoining microsite of the nurse plants and most 

 

 

 
Fig. 3. Plexus diagram for species of a late successional Brachypodium coenostate. (Explanation for symbols see in Fig. 1 and Table 3.) 
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propagula were not able to grow in every 
microhabitat. As a consequence of these phenomena 
an individual stand was a mosaic of species 
populations showing particular spatial patterns. 
Matrix perennial graminoids played an important 
role in spatial organization. Their segregation in 
space was obvious. This feature was also found by 
Thorhallsdóttir (1990) in her community.  

Thus, our findings seem to support the non-
randomness of species assemblages, similarly with 
the results obtained by Gigon (1996), Hara (1993), 
Thorhallsdóttir (1990) and Watkin and  Wilson 
(1992) in their communities. Our results are, 
however, partly in contradiction with van der 
Maarel’s carousel model (Van der Maarel and Sykes 
1993, 1997, Sykes et al. 1994) which assumes that 
each species can reach and survive each microsite in 
a community, i.e. the spatio-temporal turnover of 
species is random. Note that the alvar limestone 
grassland community studied by van der Maarel was 
homogeneous, grazed for a very long time and 
composed by mostly shortlived species. Carousel 
model might be valid for this species saturated, near 
the equilibrium community. However, species turn-
over seems to be well-structured in our spatially 
heterogeneous transitional communities. We suggest 
that interspecific spatial associations are dependent 
on a patchy microenvironment induced by the 
variation of local population densities, dispersal 
limitations and limited plant propagations.   
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